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Nonlinear equilibrium fluctuation-dissipation relations are established for mag- 
netic field-free binary ionic mixtures. These relations are derived from calcula- 
tions of the second order partial current density response to perturbing fields 
which act on type A ions or on type B ions only. Our principal result connects a 
single three-point dynamical structure function to a combination of quadratic 
partial density response functions. This kind of formulation makes it possible to 
obtain a more detailed description of three-point spectral correlations by evalu- 
ating the response functions from model-dependent kinetic equations. We carry 
out such an evaluation in the random phase approximation. 
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1. INTRODUCTION 

In this paper, we derive new dynamical  nonlinear fluctuation-dissipation 
relations for binary ionic mixtures and from these relations we evaluate the 
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three-point dynamical structure functions in the random phase approxima- 
tion (RPA). 

Model-independent fluctuation-dissipation theorems (FDT's) link 
transport coefficients (electric susceptibilities, conductivities, etc.) to equi- 
librium n-point spectral correlation functions. Linear (n = 2) FDT's, estab- 
fished some time ago (1) for one- and two-component plasmas without and 
with magnetic fields, are by now textbook examples. Useful formulations of 
their dynamical nonlinear counterparts are, however, still lacking in all but 
the simplest kind of plasma configuration, namely, the magnetic field-free 
classical one-component plasma (OCP). 

If one is attempting an explicit calculation of the dynamical structure 
function in some model-dependent approximation--and that is the stated 
second goal of the present paper--then what is needed is a nonlinear FDT 
which connects one and only one n-point (n >/3) structure function to its 
transport coefficient relatives since it is these latter which are customarily 
evaluated from model-dependent kinetic equations. A number of investiga- 
tors have succeeded in formulating the OCP nonlinear FDT's in this way: 
Golden et a/.  (2) and Sitenko (3) established the FDT connecting a single 
three-point dynamical structure function to a combination of three qua- 
dratic polarizabilities [see Eq. (65) below]. 5'6 Their work has only very 
recently been extended by Kargin, (6) who demonstrates, via the Sitenko 
formalism, how one can generate n >/3 nonlinear FDT tensor relations for 
classical OCP's under the influence of both scalar and vector potential 
perturbations] 

The nonlinear FDT established by Golden et al. and Sitenko has 
proved to be a valuable tool in OCP many-body theory. It has made 
possible (i) the formulation of test particle energy loss entirely in terms of 

5 Efremoy's earlier formulation (4) is considered to be less general since it leaves out spatial 
dispersion. 

6 FDT relationships between higher order correlations and transport coefficients have been 
established by Friedman e t  a l . (5)  for systems (such as partially ionized gases and electrolyte 
solutions) under homogeneous and stationary perturbations. As it was explained in Ref. 2, 
the role of the higher-order correlations under these circumstances is either to modify the 
dynamics of simple collisional models or to alter the relationships between diagonal and 
off-diagonal (Hall components) matrix elements of the conductivity. In contrast, the model- 
independent theories in Refs. 2 and 3 and the present paper are restricted to a consideration 
of diagonal longitudinal (with respect to the wave vectors) elements and assumes that the 
driving perturbations are functions of space and time. The FDT relations of Refs. 2 and 3 
and the present paper do, however, share one common feature with those of Friedman e t  al.  : 

all the approaches independently establish that the longitudinal projection of the wave- 
vector- and frequency-independent conductivity is identically zero. 

7 The corresponding (n = 3, 4) static FDT's established via a well-known functional derivative 
procedure, are reported in Ref. 7. 
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polarizability functions, (8) (ii) the formulation of useful frequency moment  
sum rules for nonlinear response functions, (3c'6'9) (iii) the explicit k-space 
calculations of higher-order OCP equilibrium correlations, (l~ and most 
importantly, (iv) the formulation of a novel dynamical  theory [the Go lden -  
Kalman-Si levi tch (GKS) approximation scheme (lla'b)] of strongly coupled 
classical electron liquidsS; to date, this is the only theory which is exact in 
the static (0~ = 0) limit (7) and at high frequencies (~0 >> o~p = plasma fre- 
quency) (lib) and which, at the same time provides a reliable description of 
long wavelength plasmons (w ~ wp) for all values of the coupling strength 
up to crystallization of the OCP liquid. (lie) 

Over the past several years, a great deal of attention has been directed 
at binary ionic mixture (BIM) plasmas, e.g., pressure-ionized classical 
H + - H e  2+ particles in a neutralizing background of degenerate electrons. 
A considerable e f for t - -both  computer experimental and theoretical (12'13'14) 
- - h a s  already been expanded in analyzing the collective mode behavior of 
such systems. Our own program of research, which enlarges on this effort, 
is based on the previously described GKS formalism. 8 The formulation of a 
dynamical  theory of BIM plasmas along the lines of Ref. l l b ,  however, 
first calls for the formulation of their dynamical quadratic (n = 3) FDT's .  
The latter is the central task of the present paper. The resulting new 
fluctuation-dissipation relations---each expressing a single three-point dy- 
namical  structure function in terms of nonlinear partial response functions 
--wil l  also contribute in other fundamental  ways to the foundations of 
plasma many  body theory, e.g., they will provide useful new sum rules and 
the corresponding nonlinear static FDT ' s  open the way to calculating a 
variety of higher order BIM equilibrium correlation functions well beyond 
the Debye-Ht ickel  approximation. 

Our derivation will be carried out more or less along the lines of the 
Ref. 2 0 C P  derivation except for one notable difference: rather than work 
in terms of physical conductivities and polarizabilities, we shall instead 

8q!aere are two principal building blocks in the GKS theory. The first is the so-called 
"velocity-average approximation" (VAA), which consists of replacing the "irreducible" part 
of the nonequilibrium two-particle distribution function in the first BBGKY kinetic equation 
by its velocity average. The formal advantage of this step is that it allows one to replace the 
nonequilibrium two-particle distribution function by a nonequilibrium two-point density 
correlation function which, in turn, can be traded for an equilibrium three-point dynamical 
structure function. The second building block, the application of the nonlinear FDT, intro- 
duces quadratic response functions as the basic objects whose approximation is required. 
There seems to be a more natural way, especially at the dynamical level, to generate 
approximate structures for these quadratic response functions [see, e.g., the RPA expression 
Eq. (81)1 than for any other quantity that might be a candidate for occupying a central place 
in the theory. 
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work in terms of the partial response function formalism suggested by 
Vashishta et al. (15~ and by Tosi e t a / .  (16) and further clarified by Kal- 
man. (~v> Indeed, it is Kalman's "species charge" concept (17) (described in 
the next paragraph) which gives credibility to the application of the partial 
response function formalism to normal plasma mixtures and it is this 
concept which we adopt in the present paper. 

Partial response functions describe the response of the plasma mixture 
to perturbing fields which act on type-A ions or on type-B ions only. Such 
fields never actually occur in normal plasma mixtures, of course, but the 
concept of them is physically reasonable. This kind of perturbation requires 
that each ion, in addition to its actual electrical charge, be endowed with a 
weak fictitious "species charge" which can interact only with (i) its corre- 
sponding perturbing field and (ii) its companion species charges. The use of 
partial response functions makes it possible to formulate fluctuation- 
dissipation relations in such a way that each involves one and only one 
dynamical structure function. 

The plan of the paper is as follows. In Section 2, we define linear and 
quadratic partial response functions and we formulate useful symmetry 
rules for the latter. In Section 3, current correlation and dynamical struc- 
ture functions are introduced. Descriptions of the unperturbed and per- 
turbed binary ionic mixture are given in Sections 4 and 5. Nonlinear 
response calculations and the subsequent derivations of new quadratic 
FDT's follow in Section 6; the new theorems are expressed first in terms of 
particle current conductivities in the time domain and then in terms of 
conductivity and density response functions in the frequency domain. In 
Section 7, we show, via the FDT's, how one can evalute the three-point 
dynamical structure functions in the RPA by calculating their nonlinear 
response function relatives from Vlassov equations; these latter results are 
new. Conclusions are drawn in Section 8. 

2. PARTIAL RESPONSE FUNCTIONS 

Consider a mixture of N A and N 8 classical point ions of like charge in 
a uniform neutralizing background of N e degenerate rigid electrons; the 
entire system occupies the large but bounded volume A. Let m~ and Z,,e 
(o -- A, B) denote the mass and electrical charge of an ion belonging to the 
a species; m e and - e  are the mass and charge of an electron. Microscopic 
number and particle current densities are given by 

No 
po,k(t) = ~ exp[ - - ik .  xo,i(t)] (1) 

i = 1  

N. 
~o,k(t) = -- i ~ k" vo, i ( t )exp[ -- i k .  xo,i( t)]  (a  = A ,  B ) (2) 

i = l  
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with Fourier  transforms 
- -  o o  i~o t  Ook~- f_oodte Oo,k(t) (31 

- -  f f  c ~  i o 3 t  �9 bok~,-j_ dte o~,k(t) = --ioaPo,ktO (4) 

Xo, i and vo,i are the position and velocity of the ith ion of species a. As to 
the uni form background,  Pe,k = NeSk- 

We shall suppose that  each particle, in addit ion to its actual  electrical 
charge Zoe, is endowed with a weak fictitious "species charge" X,e (Xo 
<< Z, )  which can, by  definition, interact  only with (i) its corresponding 

A A 
electric field per turbat ion  E " ( k , t ) = - i k e p ~  and (ii) its companion  
species charges. F rom (i), the corresponding potential  of the external force 
acting on the particle is 

A A 
V~ = X~ (o = A, B ) (5) 

A single such partial  driving potential  produces  density excitations (to all 
orders in V ~ in each ionic species. The  latter are linked to the former  by 
linear and nonlinear wave-vector- and f requency-dependent  response func- 
tions defined through the constitutive relations 9'1~ 

(Po,k,~) ( 0 - -  ~ Lo,(kc0)I)O'(koa) (6) 
o ' =  A , B  

f "  . . o  . . . .  <po,k~)(2) 1 ~ dl~ dv)Go,o,,(plz, qv)V (p/z)V" (qv) 
27rA o',o"=A,, 

X ~ k _ p _ q ~ ( 0 ) -  / s  P) (7) 

No te  that  the density response of type-o '  ions 

(po,,u(t)) = (po,,u(t)) (1) + (po,,k(t)) (2) + ' ' '  (8) 

enters into the expression 

V~ = l )~  + ~ ~~176 (9) 
O t 

for the potential  of the total force acting on a type-a  ion; the Coulomb 
interaction energy 

4~re2 6 "~'X aX ~ O~~ (k) = - - ~  (ZoZ"' + (10) 

9 The angular brackets denote an ensemble averaged quantity and ( �9 �9 �9 )(n) = O [ 1~~ "] refers 
to ensemble averaging over the perturbed system for n > 1 and over the unperturbed system 
for n = 0. 

l0 The significance of the super and subscripted species indices is as follows: repeated indices 
occurring in a product, one as a superscript the other as a subscript, underscore ~o'=A,B- 
type summation. This kind of illuminating tensor notation is used throughout the paper. 
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takes account of the additional species charges in accordance with (ii) 
above. 

"conductivity" functions can be similarly defined through the consti- 
tutive relations 

whence 

(/~a,kto)(1) = E "l~no'(ko')) ~'ga'(k~O) 
O r 

l o ~ y  y ^ ^ . . . .  (tia'k'~ -- 2~ra dlz dv %o,o,,(p/.t; qv) V ~ (p/x) V ~ (qv) 

X ~k_p_q~(~ -- ~ -- P) 

(11) 

(12) 

i~oo,(kr ) = ~0~o,(k~0) (13) 

i~o,o,,(p/x; qv) = (/~ + v))~o~,o,,(p#; qv) (14) 

in virtue of Eqs. (4), (6), (7), (11), and (12). 
The above nonlinear response functions obey fundamental symmetry 

rules, some of which will be of use in the sequel. We list them here. 

Interchange Symmetry: 

~oo,o,,(P#; qv) = ~oo,,o,(qv; p/~) (15) 

Reality Condition: 

~oo,o,,(p/x; qv) = ~*o,o.(-p - /~ ;  - q  - v) (16) 

Invariance under Spatial Reflection: 

~o.,o,,(p/~; qv )  = ~7~0,."( - P/~; - q v )  ( 1 7 )  

Note from (16) and (17) that 

~oo,.,,(p/~; qv) = ~*o'o"(P, -/~; q, - v) (18) 

As to the ;~o,o. response functions, we see from (14) that they satisfy the 
symmetry rules (15)-(18) as well. 

3. CURRENT CORRELATION AND STRUCTURE FUNCTIONS 

We next define relevant two- and three-point current correlation 
functions: 

(NoNo,)'/2Qao,(kt)~k_p =---- (tSo,k(0)tbo, _p ( -  t)) (~ (19) 

(UoUo,Uo,,)l/2Qoo,o.(pt'; q t ' ) ~ k _ p _  q ~-- -- i(Po,k(0)po,,_p(- t ' ) /bo. ,_q(-  t " ) )  (~ 

(20) 
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where the (0) superscript indicates that ensemble averaging is carried out 
over the equilibrium sytem. The corresponding wave-vector- and frequen- 
cy-dependent correlations are then 

_ w / x .  . ,  \ ( 0 )  (UoUo,) 1/2 Qoo'(k~ -- /X) = ~ \P.,ko, Vo,p~/ (21) 

(NoNo'N,,") '/3 Q.o,o-(P/X; q P ) ~ k - p - q S (  ~ - -  /X --  t,) 

_ w/xv 
- -  2~r (O~'k'~O*"P~0*"'q~)O) (22) 

Two- and three- point dynamical structure functions are similarly 
defined as follows: 

1 
2'77 (/90, k~176 >(0) ~ (N~176176176 - /x) 

+ 2~rNoNo, dkdp8 (~)6 (/X) (23) 

1 2---~ (P~ -~" ( N a N ~ 1 7 6 1 7 6 1 7 6  q P ) S k - p - q S ( ~ O  --  /x - -  re) 

+ 2~rNo(No,No,,)l/26k6p+qg(a~)6 (/X + v)So,o,,(p/x) 

+ 2~rUo,(No.N o )'/26pdk_,6(/X)8(~O -- v)S,, .o(qv ) 

+ 2rrNo.(NoNo,)1/28qSk_pS(t,)8(w - /x)Soo,(ko~) 

+ (2~r)ZNoUo,Uo.dpdq6t6(/x)8(v)d(w) (24) 

Then from (21) and (23), 

Qoo,(ka~) = o02Soo,(kw) (25) 

and from (22) and (24), 

Qoo'o"(P/X; qv) =/xv(/x + v)Soo,",,(p/x; qv) (26) 

The three-point Q and S functions are, by definition, invariant with 
respect to rotation on the triangle formed by the four vectors (p/x), (qv), 
(k = p + q, oa=/X + v), i.e., 

Q,,,,,o,,(p/x;qv) = Qo,,, ,o,(-k - ~,~; p/x) = Q,,,,,,,o(qv; - k -  w) (27) 

and 

S~o,o,,(p/X; qv) = So,,oo,(- k - oa; p/x) = So,o,,o(qv; - k  - 0a) (28) 

To verify that these three-point functions are real, we observe that the 
ternary correlation appearing on the left-hand side of (24) undergoes no 
change in sign either under microscopic time reversal (/X--> -/X, v - -> -  v, 
0a-+ - ~) or under space inversion (p--> - p, q + - q, k + - k). Conse- 
quently, the correlation is real, whence from Eqs. (22) and (26), Qo~,o,,(p/x; 
qv) and S,o,o,(p/x; qv) must also be real. 
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Finally, note that (23) and (24) readily generate corresponding rela- 
tions which define the well-known two- and three-point static structure 
functions 

So.,(k) = f ~d~ Soo,(k~o ) (29) 

dr 
Soo,o,,(pq) = f f (30) 

dl, soo,o,,(p~; q.) 

in terms of equal-time equilibrium correlations. 

4. DESCRIPTION OF THE UNPERTURBED SYSTEM 

The state of the magnetic field-free unperturbed BIM in the infinite 
past is characterized hy the macrocanonical distribution function (normal- 
ity to unity): 

a(~ = e -BH'~ / f a r e - . : '  (31) 

where 
NB 

dr  = I'[ I-[ d3xA,id3pA,id3xB,jd3pBj 
i = l j = l  

is a differential volume element in the phase space spanned by the 6(N A + 
NB) ion coordinates and momenta; xA, i and PA,i are the ith position and 
momentum of an ion belonging to species A, /3-1 is the temperature in 
energy units, and 

f ?o2i H(~ = E ~ + V(~ (32) 
a = A , B i = I  

is the unperturbed Hamiltonian including A-A,  A-B ,  B-B,  A-back- 
ground, B-background, and background-background interactions. Letting 
y and z denote the coordinates of the uniform neutralizing (electron) 
background, the potential energy is given by 

N o, No,, ~ a 'a"Xa'X~ ) e 2 
v<~ = • E E E E  (z~176 

2 Ixo,,i- xoojI a '=A,B o"=A,B  i=I  j = I  
iv~j 

No' Z O,c2 
Ne ~ ~ f d a y  
A Ixo'., - Y] o' ~ A , B  i= 1 " 

-t- 2A 2 )  ~YJ [y -z [  (33) 
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or equivalently, 

o'o,, k V(0) _ 1 ~ E 0 ( )(Po',--kPo",k- 6o,o,,No,} + C (34) 
2A o',o"=A,, k~O 

where O"'~ = Ok(Z~ ~ + 6~176 0") is the Fourier transform of the 
Coulomb energy defined earlier [see Eq. (10)]; the omission of the k = 0 
contribution takes account of the uniform background and we note that the 
divergent constant 

C = - 2---s o'=A,B ~ ePo'~176 2-~q)u=~ o'=A,B ~ (X~176 

(35) 
is customarily left out of the collective coordinate formulation (34). In 
deriving (34) and (35) from (33), we have exploited the charge neutrality 
requirement 

Z~ = N e (36) 
o '=  A , B  

As to the species charges, they also satisfy their own neutrality condition 

E X~ (37) 
o '=  A , B  

where X A << Z A , X B << Z B, and ]Xel << 1. Thus if the BIM is driven by ~A 
~'B and q, perturbations, the uniform background is still left unaffected since 

its species charge cannot interact with the perturbations. 
Now, it is not H (~ which enters directly into the calculation of the 

partial ion density response (inasmuch as H (~ is explicitly independent of 
the perturbing field) but rather the Hamiltonian H for the interactions 
between the plasma ions and the external field perturbations. We therefore 
turn next to the formulation o f / )  and the ensuing calculations of the linear 
and nonlinear ion density responses from perturbed Liouville distribution 
functions. 

5. DESCRIPTION OF THE PERTURBED SYSTEM 

Let the time-dependent scalar potentials 

~O(rt) = 1 E O~ eikr, o = A,B (38) 
k 

be introduced into the system. The equilibrium Hamiltonian H (~ and 
Liouville operator 

N~176 ~__O__OH(~ ) 0 l 
~(o) ~ _ i[H(~ . . . ] = i E E aXoi Opo, i apo, i Oxoi 

o = A , B  i= 1 , 

(39) 
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are accordingly perturbed by amounts 

No 
/~(t)= 2 X~ E &(Xo, , ,O  

o =  A , B  i =  1 

_ 1 ~o E l)"(kt)o.,-~ (40) 
A k 

i " ~(t) -  ~ E Z V~ . . . .  ! (41) 
k 

The subsequent perturbation of the Liouville equation 

a(rt) + iea(rt) = 0 (42) 

for the distribution function then results in the formal solution 

a ( r t )  = a ( ~  + a ( l ) ( r t )  + a ( 2 ) ( r t )  + �9 �9 �9 (43) 

a ( ' ) ( r 0  = - i Z f [  ~ u(r176 t - .) a(~ (44) 
o '= A , B  

a ( : ) ( r t )  = - 2 (~176 U('c)~~ "r)U(")~~ "r- "r') a(~ 
o ' , o " = A , B J O  JO 

(45) 

where U(~-)= e -;'e(~ is the time evolution operator pertaining to the 
equilibrium system. Our derivation of the quadratic partial FDT's from 
(45) will follow the procedure of the Ref. 2 derivation for the OCP. For the 
sake of completeness and because it is instructive, we have displayed in 
Appendix A the key steps leading to the establishment of the by-now- 
classic linear FDT's (quoted, e.g., in Refs. 15 and 16). 

. NONLINEAR RESPONSE THEORY 

We come now to the central task of this paper--the derivation of the 
nonlinear FDT relations. From Appendix A [Eq. (A1)], 

~~ t - "Ou('/)~"" ( t - "~ - . / ) a  (~ 

_ f l a  (~ . . . . .  

A2 ~ , V " ( p t - T )  V O ( q t - ~ - - V )  
Pq 

O t �9 • {/~&,_pU(~')~o,,,_. + [Oo,,_., ( ~ ) 0 . , . . - . ] )  (46) 



Binary Ionic Mixture Plasmas 

Substitution of (46) into (45) then gives 

1 , . ,{~(rt;  ~") aO)( r t )=  g . ~  o', +~ ( r t ; o " ,o ' ) }  

t 

�9 / '  t " ' "  • v ( t  - r){ ~oo . ._ , v (  - )oo..._. 

291 

(47) 

+[~o. , . v ( r -  t")&. q]) (48) 

t " =  t ' - r ' .  The two times t' and t" are physically where  t ' =  t -  % 
equivalent so that a symmetry with respect to prime-double-prime inter- 
change should prevail. To make the symmetry manifest, consider the 
contribution ~(Dr; o",a'): reversal of its order of integration accompanied 
by the interchanges p <-~ q, t' <-~ t" gives 

~(rt; o", ~') = A-- r -  ~ ~~ ~~ 

• U(t  - t")(  f lL , , ,_qU(t"  - t')fio, p 

+ [po,. _q, U(t" - t')~o.,_,] } (49) 

whence the manifestly interchange symmetric expression 

~(2)(I ' t)  - X , ,  dff 
o o  

• f~_ dr" l~~ t) 

= o ( c -  c ' ) v ( t  - t ' ) (  ~ & _ . v ( r  - c ' ) i , < _ ,  

+ [oo,.-,, v ( , ' -  r')~o,, ,]) 

+O(t"  - t ' ) U ( t -  t"){ fl(~o,,._,U(t" - t ')#.,,_. 

+ [ o o > . ,  v ( t "  - c)~o _.])  (50) 

results from Eqs. (47)-(49) [0 is the unit step function]. As a consequence, 
second-order ensemble-averaged quantities, e.g., the partial current density 
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response 

< p o , k > ( 2 ' ( t )  = far a<2)(rt)Oo,k 
_ f l  t 

yt_ dt" " . . . .  ~ ' ~ " " " t t  , • V ( p t ) V  (qt)<O.,klo,.,,(pq, ' " ' t ) )  (~ (51) 

are now guaranteed to exhibit the symmetry 

<[~o,kIo,o.(pq; t ' t " ;  t ) )  (~ = <Oo,klo.o,(qp; t " t ' ;  t ) )  (~ (52) 

required for the derivation of the nonlinear F D T  in the sequel. 
Continuing the calculation of (51) according to the procedure of 

Appendix A, the passage from Eulerian to Lagrangian representation is 
effected by letting the time evolution operators act on tSo,,_ p and t~o-,-q. One 
obtains 

o ~  o0 / ' ~ [t A t A t/ (Do,k(t)) (2) -- fl  E ( d~" ( d'r V ~ (pt - r ')  V ~ (qt - "r"'8 
2A 2 ,, ,, pq ao ao ) k- p- q 

X ( ~ ( p o , k ( 0 ) 0 o , , _ p ( -  T ' ) 0 o . , _ q (  - -  T t t ) )  (0) 

+ 0( ."  - T')<0o,k(0)[0o,,-.(-- T'), ~ o . q ( - -  T")])  (~ 

"Jr- O(T' - -  Ttt)<po,k(O)[ po,,,_ q(- To), I0o,,_ p(- T')]> (0)) 

where T' = t -- t', T" = t -- t". 

( 5 3 )  

Dynamical Fluctuation-Dissipation Relations: Time and 
Frequency Domain Formulations 

The average second-order partial current density response is connected 
to the external driving potentials through quadratic "eonductivities" de- 
fined by the constitutive relation [see Eq. (12)]: 

<~o,k(t)><2) = X ', ,, 

• ;_~  dT" ~oo,o,,(pT'; q~'") l)~ -- T') l)~ -- T")Sk_p_ q 

(54) 
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The quadratic FDT 
A t .  I! 
noo ,o" (W,  q'r ) = P('r')P('r") 

X ( ] ~ p o , k ( O ) p a , , _ p (  - -  ' T ' ) p a . , _ q (  - -  q . . ) ) ( O )  

+ 0(~" - ~')<&k(O)[Po, ~(--  ~'), ~o", ~(--  ~ " ) ] 9  
,.i. t! " 0 +~(~,_ )>po,( )[po,, ~(_~,,),~o, ~(_~,)]>~o~) 

( k = p + q )  (55) 

then immediately follows from Eqs. (53) and (54). Thanks to the above 
manipulations, the right-hand side of (55) is manifestly symmetric under 
p ~-~ q and prime-double-prime interchange; so is the left-hand side [were it 
not, only the symmetric projections would enter in (54), which could then 
be redefined as ~o~'o"]. 

The more useful time domain expression 
A 

I .  t! 
~o,o,,(p~-, q~- ) 

_ _  ^ ! ! 
- -  ~ / o ~ , ~ , , ( p r  ; q r " )  - ^ " T ; - -  ~ / o , , o , ~  ( p T  - - k ~ - " ) 8 ( ~ - ' )  

- n % o , , ( - k ~ ' ;  q~ '  - ~")0(~") 
B2 

- 2A 0(r')a(r")(tS~176 ~")tS~ ~.,,))(0) (k = p + q) 

(56) 

which instead relates a single dynamical correlation to three nonlinear 
conductivities, can be defined from (55) according to the procedure of Ref. 
2. The corresponding frequency domain FDT 

Im( Ooo,o,,(p/~; qv) + ~o,,~o,(-k - ~o; p/~) + Oo,o,,o(qu; - k  - ~0)) 

B ~ 
- 4 (n~n"'n~ Qoo,~,,(p/z; qv) 

(n  o = N , , / A )  ( k = p + q , ~ o = / ~ + v )  (57) 

then follows from (56) (see Appendix B for details). Finally, the conduc- 
tivities and current correlation function can be eliminated in favor of the 
more popular partial density response and structure functions [cf. Eqs. (14) 
and (26)]. The dynamical FDT 

Re{ )~'~ q v ) / t v  ~,~,,,oo,(- k - co; p/z) _ )~,,o,,~(qv; - k - ~o) ) /z~o ~ov 

8 2 
= - 4 (n~176176 q v )  (k = p + q, r =/~ + p) (58) 

which results is the central statement of the present paper. There are eight 
such relations (o, o', a" = A, B). 



294 Golden and Lu 

It is now a simple matter to derive the nonlinear FDT for the spectral 
correlation of combined microscopic charge densities, 11 

2P(p/~; qv) = ~ ZoZ~ qv) (59) 
O ~ f f t ~ O  tl 

=A,B 
[cf. Eqs. (23) and (24)]. First, observe from (58) and (59) that 

Re ~ ZoZ~'Z~ 3 
r  rt 

( Zo',"(P"; qv) ~G,,oo,(-k - ~0; p .)  Z,o,,o(q~'; - k  - ~) '~ 
x l ~v ~ - So~ 

fi  2 
- 2 P(P/~; qv) (60) 

We next express the left-hand side of (60) in terms of external potarizabili- 
ties, &s, defined by the constitutive relation 

(qk,~) (2) = ~ Z,,e(Po,k,,,) (2) 
o =  A , B  

_ i ~ p q f f , ,  " "  8CA pqk dr d~'~(Pt~;q~)r162 ~ -- ") 

(61) 

On the other hand, we have from (7) that 
' �9 " ~  

X,,,,,,,,,(p#,qv)Z,,X X e eO (P/~)e (qv) (qk'~ -- 2~rA 
f f , O t O  tp 

X ~k_p_q~((.d- ~ -  P) (62) 
In order to reconcile Eq. (61) with (62), we must now entirely discard the 
notion of partial perturbing fields in favor of a field ~ which simultaneously 
drives both species [see Eq. (61)]. This eliminates at the same time any 
further need to make a distinction between "species charge" and actual 
charge. To summarize: the stipulation that r176 ~~ = ~ is tantamount to 
identifying X"eeo" as being Z"eeo, whence 

A , tt ,~. ,'~ 

(qk~) (2, - -  2~-A o,o~,,o,, ~ fd@~o.o..(p,; qv)ZoZ~ ~ e3(~(pff)~)(qv) 

• 8 k - H ~ ( ~ -  ~ -  ~) (63) 

Comparison of (61) and (53) then gives for the external quadratic polariz- 
ability 

a ( p / z ; q v ) - - 4 ~ r i  Z ZoZ~176 (64) 
pqk o,o',o" 

t t The factor 2 has been introduced into (59) to facilitate comparison with the Ref. 20CP 
result. 
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leading, in turn, to the total FDT  

I m (  ~ (p/~; qv)/,v 8 ( -  k - ~o; p / , ) ~ o  a(qv; - k -  to) 1 -- 2qrfl2 
P(Pt*; qv) oav I pqk 

(65) 

Equation (65) is identical to its OCP counterpart [Ref. 2: Eq. (66)], as it 
should be. 

We conclude this section now with a brief derivation of the static 
partial FD T relation from (58). Since Soo,o,,(plz;qv ) is expected to be 
nonsingular, t he / ,  = 0, u - -0 ,  ~0 = 0 singularities in (58) are spurious and 
the nonlinear FD T  remains unchanged if one stipulates that each frequency 
denominator in (58) is a double principal value denominator.  With this 
understanding, integrations over/~ and v provide 

ppf f 
• Re[  )~'~ qv) ~ , ,oo , ( -k  - oa; Pt*) _ Yg'o,,o(qv; - k  - co) 1 

{ /iv bt~o coy ) 
m8 2 - 4 (n~176176176176 (66) 

where Soo,o,(pq) is defined by Eq. (30). One then finds that 

P P f  ~dF f dVRe~O'~ I tv = _ 41Re~o,o,,(p0; q0) (67) 

ePf f dv Re ~ " ~ 1 7 6  k - ~~ P/z) 

= _ ppf d~ ( are Re ~""~ - k ~  -/~; OF) 

_ 1 Re)~o,,oo,(_k0;p0) 
4 

(68) 

p p f  ~dl~ f dv2~r Re )G'~176 - co) 

f d~ (" dv Re ;~,,o,,o(qv; - k ~  - v) 
= - P P  2 - ~ J 2 ~ r  v ( ~ - v )  

= _ p e f  f Re - k '  - "  ) .(g--7) 
A 

- ~ Rexo,o,,~(q0; - k 0 )  = 0 

(69) 
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in virtue of the double Hilbert transform formula 

_ 1ppf d/~' f dp' )~(/z'p') 

satisfied by the ;~'s. We note that the evaluation of the third left-hand side 
member of (66) [Eq. (69)] relies on the Poincart-Bertrand theorem(18) cited 
in Appendix B. Substitution of (67) to (69) into (66) readily yields 

Re(;~oo,o,,(p0; q0) + L"oo'(-k0; p0)} = f lZ(nono,n~ (70) 

But Eq. (70), in turn, generates the FDT relations 

Re{;~,,~ - k0; p0) + )~,~ - k0)} = fl  2(nono,no,,)a/3So,,oo,( - kp) 

(7t) 
R e ( f G ,  o,,o(qO; - k0) + ~,o,o,,(p0; q0)} = f l2(nona,no, , ) l /3S , /o , ,~(q ,  - k) 

(72) 

whence 
A , A A 

ReXoo,o,,(p0, q0) = Rexo,,oo,(-k0; p0) = Rexo,o,,o(q0; -k0)  (73) 

in virtue of the triangle symmetry rule (28) obeyed by the S's. The desired 
static FDT result 

Re)~,o,o,,(p0; q0) = �89 fl 2(nono,no, ,) l /3Soo,o, ,(pq) (74) 

follows from (70) and (73). Confidence in its dynamical counterpart (58) is 
further enhanced by the fact that Eq. (74) exactly reproduces the static 
FDT's (independently formulated from a functional derivative procedure 
and) quoted in Refs. 17 and 19. 

7. NONLINEAR RESPONSE IN THE RPA 

This paper has as its second objective the explicit calculation of the 
dynamical three-point structure function. Thanks to the new FDT relation 
(58), this can be accomplished by calculating the nonlinear partial 2's from 
model-dependent plasma kinetic equations. For binary ionic mixtures in 
the intermediate and strong coupling regimes, such a task is indeed formi- 
dable and is, in any case, well beyond the scope of the present paper. 
Rather, we shall confine ourselves to calculations made in the RPA. This is, 
of course, the appropriate first step: it paves the way for future perturba- 
tion theoretic calculations of dynamical three-point structure functions in 
weakly coupled systems. 
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The introduction of driving potentials ~~ (o = A,B) into a mixture of 
noninteracting ions results in the following Vlassov expressions for the first- 

A 

and second-order (in q,~ one-particle distribution functions 

F ~ L ( v )  = - - -  

I k" OFo(~ ,,, 
mo r k-v  ~s, [ 6"~'W(k~)+epf(k)(O~',k'J1) ] 

1 k .~ '~  " "/u,.o~ . ,  

(75a, b) 

F (2) tv~ = 
1 k" ~Fo(~ 

m. -~ ~ ~ v ~] q)f(k)(P'"k~)(2) 
S I 

B l E f d ~  1 a 
m,, A ~ 2~r ~o - k .~ q" Ov p u 

s~s  " 

p. vF~ ~ 
p , - p . v  

s '  A R P A  x [ ~o~.8o~: + ,o (?)X;.o. (p~,)] 

• [ 8o~,,~,' + q~f'(q);~oP~(qg) ] I~'~ f'~ 

( k = p + q , ~ =  p,+ g) (76) 

where 

(o,,,k~) = f d~v Fs' ,k~o(V) (77) 

and 

C(k) s, = 0k(Z zo + 8;'x) ) 

Fo(~ no( ~flm~ ]3/2) expel-tim~ 

(78) 

(79) 

The derivation of the RPA ;~ density respo,lse functions from (75) and 
(76) is routine. We first generate first- and second-order manifestly inter- 
change symmetric expressions for (9o,k~) by integrating (75a) and (76) over 
velocity space. We next drop all terms proportional to (Xe/Ze) 2 since, by 
definition, they are small compared with order unity terms. From the 
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constitutive relations (6) and (7), one then obtains the desired RPA expres- 
sions: 

I - ,%o, (8o) LRfA(kr176 Z,,Zo,,k ERPA(kr 

^ RPA - . 
Xgo,o,,I,P/~, q~') 

where 
frequency-dependent dielectric response function and 

1 (fl_~ 0~PA (P/~; qv) l [ 1 + 0L~PA(k0~) ] 
(~p~(p~)~PA(q~)~p~(k,o) no .y~(p0; q0) 

Zo 

Zo RPA - - 

B2 ~Pa(p.; qp) z~ .~.A(k,~ ) 
2 % ~ e A ( p 0 ; q 0  ) Z o 

X { ~o, [ 1 "F 0~RPA(p/t) ] -- ~o~' Z~ 0LRPA (p/~)) 

go RPA - ", 

(o,~=A,~;o§ (81) 

eRPA(k~o) ---- 1 + a~PA(k~o) + a~PA(k~o) is the wave-vector- and  

(xoRPA(kr = 0LRPA(k0 ) ~ o n  ~ fd3~ k" 3F(~ 

o~PA(p/~; ql') = a~PA(pO; qO) p'",,"o ~ f d3v 
(,,, k- v) 2 

(82) 

p-v  ) q .v + k ' q  (83) • k ' P v - q - v  /z--p- v 



Binary Ionic Mixture Plasmas 299 

are dynamical linear and quadratic polarizabilities with static values given 
by 

a R P n ( k 0 ) -  4~rfln,, Zze2 
k 2 (84) 

27rif12n,,Z3e 3 
= (85) a o  R P A  (pO; qO) pqk 

Our main task is completed when (81) and the formulas for *RPA~ ,_ 
pff) and ^ RPA / , Xg,o,,otqu, - k  - o~) that (81) generates are substituted into the FDT  
(58). The resulting expression for the dynamical three-point structure 
function will be entirely in terms of familiar RPA linear and quadratic 
polarizability response functions; these latter can be routinely evaluated 
from (82) and (83). 

It is instructive to examine the above results in the static limit where 
the quadratic polarizability effects are absent. The ff = u = 0 version of (81) 
when combined with the FDT (74), gives the Debye-Htickel  (DH) expres- 
sion 

Soo,o,,(pq) 

1 
,RPA(p0),"PA(q0),RP (k0) 

"o oLRPA (kO) ] 
X (nono,no,,),/3[l+ 

n~ Z~ a2PA(kO) 
(n,~no,n,,,)|/3 Zo 

Z~ RPA ~ ,'~\ 

(o,~=A,B;o~)O~=p+q) (86) 
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The triple e denominator is certainly a key element in (86) and in the 
dynamical So,,o,, generated by (81). This can be seen by setting Z~ = 0 and 
o = o' = a" (so that 8~176 = 1 = 8~o,,, 8~,, = 0 = 8~,,); one then recovers from 
(86) the well-known D H  result 

1 
S(pq) = ,R,A(p0),RPA(q0),RPA(k0) 

for the OCP three-point static structure function. 
As to the total correlation function, 2P, one can show from (86) that 

2 P ( p q ) =  ~,, Z~Z~'Z""e3(non~,no,,) ' /3Sor 
O',Or  0 'r~ 

= e 3 (Z3nA + Z 3 n B )  
,RPA(p0) r ,RPA(k0) 

ikpq aRPA(p0; q0) 

-- 2 ~ 2  ERPA(p0) cRPA(q0)s (87) 

which is precisely the static FDT counterpart of (65) in the RPA [cf. 
Eq. (85)1. 

8. C O N C L U S I O N S  

In this paper, we have established nonlinear fluctuation-dissipation 
relations for magnetic field-free binary ionic mixtures. These new relations 
are derived from calculations of the longitudinal second-order response of 
the equilibrium system to partial longitudinal driving fields. 

Our principal time domain result (56) links a single equilibrium three- 
point current correlation function to a combination of three quadratic 
partial conductivities. A variety of fluctuation-dissipation relations are 
exhibited in the frequency domain: FDT's  (B1) and (B2) are causal with 
respect to the frequency arguments g and ~; FDT's (57) and (58) are not; 
the latter relations are, however, manifestly triangle symmetric under simul- 
taneous rotation of their species indices and four-wave vector arguments 
(pg), (qp), (p + q, /~ + u). Equation (58) is the central statement of the 
present paper. It relates a single three-point dynamical structure function to 
a combination of quadratic partial density response functions. Therefore, it 
is now possible to obtain a more detailed description of the BIM spectral 
correlations by evaluating their density response function relatives from 
model-dependent kinetic equations. We have carried out such an evalua- 
tion [Eq. (81)] in the RPA as an appropriate first step in a systematic 
perturbation theoretic treatment. 
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One might well ask if the FDT's reported in this paper also apply to 
electron-ion plasmas. One physical problem which arises in such systems 
relates to the negatively divergent Coulomb energy of an electron-ion pair 
at a small separation distance r. As a consequence, the electron-ion pair 
correlation function diverges as r---> 0. This unphysical behavior, which is a 
defect of the classical theory, can be removed by properly taking into 
account the atomic bound states. To avoid the rather difficult quantum 
mechanical treatment which this entails, Dunn and Broyles (2~ suggested 
that the interaction potential ~ei(r)----- - - Z i e 2 / r  might be suitably softened 
by multiplying it by a factor Bei(r ) = 1 - exp(-/xeir ), where ~s 1 is of the 
order of the Bohr radius. Following the suggestion of Gombert and 
Deutsch, (2~ one might effect similar modifications in the ion-ion and 
electron-electron interaction potentials to take account of quantum diffrac- 
tion effects; for the like particle interactions,/z -~ is of the order of the de 
Broglie wavelength. The FDT's (56)-(58), (B1), (B2), (Bll), and (65), 
however, are left unaffected by the ensuing modifications in Eqs. (8), (9), 
(34) and (35). Hence within the context of such phenomenological formula-- 
tions of the interaction potentials, all of the fluctuation-dissipation relations 
reported in this paper are valid for electron-ion plasma systems as well. 
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APPENDIX A: REVIEW OF LINEAR RESPONSE THEORY 

Our starting point is Eq. (44) and its explicit evaluation is straightfor- 
ward. From (41) and (31), 

&~(t)a(o) = _ _ 

whence 

i A r 

S~ E V~ (pt)[ ~176162176 
P 

iBa(~ E P~176 p] 
A p 

ifla(~ ~ o t " (A1)  a p p ( P ) ~ 1 7 6  

a (l~(Ft) - - fla(~ fo~dT ~-)0o _p (A2) E Z u('O ('~ - 
o ' = A , B  P 
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The first-order partial density is then calculated according to 

<0~,k>(')(t) = fdr a(')(Ft)0~,k 

A o ~ ]  p f l  s162 l)~ - ~)fdra(~ U(,)Oo, . (A3) 

In the above Eulerian (Schr6dinger-like) picture, the microscopic density 
and current operators have no explicit time dependence. This time depen- 
dence, however, can be generated by shifting the representation to the 
Lagrangian (Heisenberg-like) picture. Then choosing t = 0 as an arbitrary 
reference time and letting the time evolution operator act on Po,p, one 
arrives at the result 

B fo~a~ - ;~ - (pa,k(t)) (I) = -- ~ -  ~ ~ ,  ~ T)<Oo'k(O)Po',--P(--q'))(O) 

- A fl 0~, ~ s V ~ - r )  ~d (0o,k(0)Oo, _p(_ r 

_ iflA 0~,, ,~p f,o~ 2--~dP exp(-ivt)I~~ 

x f_~d~ ~a+ ( , , -  t~)(oo,,,(t = o )o* , , , , J  ) (A4) 

whence from (23), 

(po,ko~)(l)  = ifl * , f ~  A y'  2 v~  ( w )  dr ~ +  (,~ - ~)(oo,k(t = O)o:,,p.) (~ 
o' P 

�9 1/2 Aa' ( c a  = - , f l~(non, , , )  V (k~) d/~ #6+ (o~-/~)S.~,(k/~) (A5) . )_ O t OO 

n o = N o / A .  Comparison of Eqs. (A5) and (6) then gives the (three) linear 
partial FDT's 

( o , o ' = A , B )  

(A6) 

from which follow the often quoted (16'17) expressions 

Im~,(kw) = - fl---~ (nono,)l/2Soo,(koO ( a , a '  = A , B )  
2 

(A7) 
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APPENDIX B: FREQUENCY DOMAIN FORMULATION OF THE 
QUADRATIC FDT'S 

In this Appendix, we formulate the quadratic partial FDT's in the 
frequency domain. First, a straightforward Fourier transformation of (56) 
provides 

~o,o,,(p/~; qe) = ~/o~,~,,(p/t; qe) - d)t6+ ( i~ + ~t)~o,,~,o(pX; - k p  - )t) 
J _  c;o 

- ~ ' ~  dX~+ (p + X)~,,,o,,(- k/~ - X; qX) 
j _ _ _  

ifl 2 i / 3 (  ~ 
2 (n~176 dto' 

• ( ~  dw" 8+ (/x - to')~+ (p - to") Qoo,o,,(pto'; qw") 

( k = p + q )  (B1) 

whence 
A 

Im%o,o,,(p~; q~,) 

B 2 
- 8 (n~176 

a -  ~ ~r ~ -~ (/1 - to')(v - to") (B2) 

in virtue of the reality of the current correlation function Qoo,,,,(PI~; q~) 
defined by Eq. (22). 

In order to obtain an expression for Qoo,o., in terms of the response 
function %~,0,,, the integral equation (59) has to be solved. To do this, we 
first recall the invariance of Qo~,o,, with respect to rotation on the triangle 
formed by the four vectors (p/~), (ql,), (k = p + q, to --/~ + p) [cf. Eq. (27)]. 
The Hilbert transform operation, however, violates this invariance so that 

A 

Im~o,,o,, does not satisfy a similar symmetry rule. One can, nevertheless, 
form the symmetrized combination, 

~,,,o,,(pft; qp) 

= Im�89 { ~oo, o,,(p/t; qp) + ~ ' o ~ " ( - k  - to; qp) + ~o,,~,o(p/~; - k  - to)} 

(B3) 

which does possess the triangle symmetry exhibited by Q~o,o,,. A simple 
expression for ~b~o,o,, in terms of the ~'s can be evolved first by expanding 
each right-hand-side member of (B3) [starting from the definition of %o,~,, 
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in (B 1)] and then recombining the results. Thus, 
A 

Im ~o,,,o,,(p~; qv) 

= Im{~,,o,,,,,(p/~; qv) - 1, ,  - -k to )  - 1, ,  �9 - v)} ~ ~/o,,o,o(p /z; ~,/o, ,o, ,(-  kw, q 

1 pf ~Re~,,,o(pX; - k v -  X) 
2~r 

1 pf dX Re~o,o, , (_k/~ _ 2t;qX) (B4a) 
2~r 
r 1 .  1 ^  

= Im l ~,,,,.o,,(p/~; qv) + 5 ~/,,.,o,,,(- k - to; pv) + 5 ~%'~176 - k  - to) } 

1 pf ~ Re~o,,o,o(pX; - k u -  )t) 2~r 

1 p f  dX . 
- 2--~ .~ ~ Re  no'oo"(- k/z - )t; qh) (B4b) 

In deriving (B4b) from (B4a), we have exploited both  the interchange 
symmetry rule (15) and the reali ty-spatial  reflection invariance condition 
(18). F rom (B4b) and (15) one can then show that 

A 

Im ~o,~o,, ( - k  - to; qv) 

A 1 .  1. .  } 
= Im ~/o,,,,,o(qv; - k  - to) + ~ ~/o,,oo,(-k - to; p/~) + -~ ~o,,,o,,(p/~; qv) 

+ P ~ Re'~,,,,,,,o(p~; - k v  - X) 

1 ef Re~a , ,,( p _ to _ 2~; qX) (B5) 
2~r 

and 
A 

Im ~bo,,,,,o(p/~; - k  - to) 

= Im no,,oo,(-k - to;p/x) + g ~/~,,o,,(p/z; qu) + -~ n~,o,,o(qv; - k  - to) 

+ 2-~ Pf ~ Re ~ o ~ , ~ , , ( p - ~ - ~ ;  q)~) 

+ 5 Pf ~ R e ~ ~ 1 7 6  2~; q2~) (B6) 

The combinat ion of Eqs. (B4b) to (B6) according to (B3) now yields the 
desired triangle symmetric result: 

~..,.,,(p/~; qv) 
2 A ~, . A = Im~ {r/oo,o,,(p/~; qv) + ~o,,oo,(-k - to, p/z) + ~/,,,o,,o(qv; - k  - to)} 

(B7) 
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Now a triangle-symmetrized FDT can be derived from Eqs. (B2), (B3), 
and (B7) by first observing from (B2) that 

A 

Im~,,,,~,~(pbt; - k - w) 

B 2 
- 8 (n~ 

x Qo,,o,o(pt~;-k-~o)+PP ~ (tL-~o')(~o+~o") 

B 2 
- 8 (n~'n~176 

B 2 
- -  8 (n~176176 

the second step exploits the interchange symmetry property of Qoo'o',, and 
the third step follows in virture of the triangle symmetry rule (27). Next, 
from (B2) and (27), we similarly have that 

A 

Im~o,,o,,(- k - w; qv) 

/3 2 
- 8 (n~176 

J 
B 2 

- 8 (n~176 

B 2 
- 8 (n~176 

T T (~ - 0(~0 - g - ~ )  (B9) 
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In  the second step, the order of integration has been reversed to preserve 
the separable integrability features of the denomina to r  under  the d u m m y  
variable transformations o~'--- - # -  e, o~" = V. In  order to bring (B9) to a 
form comparable  with (B8) the Po inca r t -Be r t r and  theorem (~8) has to be 
invoked providing 

- Q o o ' o " ( P ~ ;  q ~ )  

Qoo,o,,(p~; q~) 

whence 

Im k - 

- 8 (n~176176 

We now substitute (B2), (B8), and (B10) into (B3) to obtain the F D T  
relation 

~ B 2 
~oo,~,,(p/x; qv) = --6--(nono,no,,)l/3Qo,,o,,(pl~;qu ) ( B l l )  

in a form in which both sides are manifestly triangle symmetric.  Equat ions 
(BT) and (B11) then combine  to yield the desired frequency domain  F D T  
result Eq. (57). 
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